Main Content

Multivariate and Rational Splines

Multivariate Splines

Multivariate splines can be obtained from univariate splines by the tensor product construct. For example, a trivariate spline in B-form is given by

f(x,y,z)=u=1Uv=1Vw=1WBu,k(x)Bv,l(y)Bw,m(z)au,v,w

with Bu,k,Bv,l,Bw,m univariate B-splines. Correspondingly, this spline is of order k in x, of order l in y, and of order m in z. Similarly, the ppform of a tensor-product spline is specified by break sequences in each of the variables and, for each hyper-rectangle thereby specified, a coefficient array. Further, as in the univariate case, the coefficients may be vectors, typically 2-vectors or 3-vectors, making it possible to represent, e.g., certain surfaces in ℜ3.

A very different bivariate spline is the thin-plate spline. This is a function of the form

f(x)=j=1n3Ψ(xcj)aj+x(1)an2+x(2)an1+an

with ψ(x)=|x|2log|x|2 the thin-plate spline basis function, and |x| denoting the Euclidean length of the vector x. Here, for convenience, denote the independent variable by x, but x is now a vector whose two components, x(1) and x(2), play the role of the two independent variables earlier denoted x and y. Correspondingly, the sites cj are points in ℜ2.

Thin-plate splines arise as bivariate smoothing splines, meaning a thin-plate spline minimizes

pi=1n3|yifci2|+(1p)(|D1D1f|2+2|D1D2f|2+|D2D2f|2)

over all sufficiently smooth functions f. Here, the yi are data values given at the data sites ci, p is the smoothing parameter, and Djf denotes the partial derivative of f with respect to x(j). The integral is taken over the entire ℜ2. The upper summation limit, n–3, reflects the fact that 3 degrees of freedom of the thin-plate spline are associated with its polynomial part.

Thin-plate splines are functions in stform, meaning that, up to certain polynomial terms, they are a weighted sum of arbitrary or scattered translates Ψ(· -c) of one fixed function, Ψ. This so-called basis function for the thin-plate spline is special in that it is radially symmetric, meaning that Ψ(x) only depends on the Euclidean length, |x|, of x. For that reason, thin-plate splines are also known as RBFs or radial basis functions. See Constructing and Working with stform Splines for more information.

Rational Splines

A rational spline is any function of the form r(x) = s(x)/w(x), with both s and w splines and, in particular, w a scalar-valued spline, while s often is vector-valued.

Rational splines are attractive because it is possible to describe various basic geometric shapes, like conic sections, exactly as the range of a rational spline. For example, a circle can so be described by a quadratic rational spline with just two pieces.

In this toolbox, there is the additional requirement that both s and w be of the same form and even of the same order, and with the same knot or break sequence. This makes it possible to store the rational spline r as the ordinary spline R whose value at x is the vector [s(x);w(x)]. Depending on whether the two splines are in B-form or ppform, such a representation is called here the rBform or the rpform of such a rational spline.

It is easy to obtain r from R. For example, if v is the value of R at x, then v(1:end-1)/v(end) is the value of r at x. As another example, consider getting derivatives of r from those of R. Because s = wr, Leibniz' rule tells us that

Dms=j=0m(mj)DjwDmjr

where Dms the mth derivative of s.

Hence, if v(:,j) contains Dj–1R(x), j = 1...m + 1, then

(((v(1:end1,m+1)j=1m(mj)v(end,j+1)v(1:end1,j+1))/v(end,1))

provides the value of DmR(x).

Related Topics